Week 2

ECE2883 HPC
 T. Collins / K. Johnson

Copyright © 2013 Thomas R. Collins

This and that

- Thoughts about the reading homework?
- Did anyone try Harris \& Harris?
- Last week's lab
- Tour the online material briefly
- Questions?
- Football game next week

Lab activities

- Last week
- Learn about workstation
- Next week
- SME: Create circuits in FPGA
- Non-SME: Connect devices to function generator, oscilloscope
- Almost half of you (SMEs) are going to get what you need to start thinking about generating digital signals for projects
- The rest of you and going to be able to start thinking about using those signals
- Everyone can start to think about the combination of the two parts

Physics

- Are we comfortable?
- We will use Ohm's Law surprisingly little
- And solve circuits even less
- Today will include one of the few times

Boolean Algebra

- Positive Logic:
- Being "near 0V" 三 logic '0' or "false"
- Being "near 5 V " \equiv logic ' 1 ' or "true"
- This is why digital designers often just poke around circuits and look at voltages
- And the connection to logic allows us to use circuits to express Boolean Algebra
- We saw some examples in lab of inputting Os and 1s (switches) and seeing outputs (LEDs)

Review: Boolean algebra

AND	In order to get a good grade in ECE 2030, a student should come to class AND take good notes AND work study problems.
OR	Today's computers run Microsoft Windows 7 OR Mac OS X OR Linux.
NOT	Campus food is NOT a good value.

- We've seen how everyday concepts can be described with logic

Simple logic from reading

- Circuit at top is similar to Wills \& Wills, p. SW-2
- If A is the state of the switch (true = pushed/closed), and L is the state of the light (true = lit)
- Then L = A
- Circuit at bottom shows more typical power/ground notation and a "normally closed" pushbutton switch

- If A is the state of the switch (true = pushed/open), and L is the same as before
- Then L = NOT A

AND, OR from Wills \& Wills

- Top: L= A AND B
$=A \cdot B$
$=A B$

- Bottom: L= A OR B

$$
=A+B
$$

- Most digital circuits are not made with manual switches, but they can be...

Logic in your house

- Logic can be implemented with switches
- It does not have to be TTL voltages
- Light switches on either end of a hall
- We need to have total control at BOTH ends
\circ It is not sufficient to have to turn BOTH on to get the light on
\circ Or both off to get the light off

Definitions

- Two switches, A and B
- Define "true" or ' 1 ' as "switch up"
- Problem:
- Write an equation where having either, but not both, switches "up" results in the light being on.
- Use only AND, OR, and NOT

Our solution

A	B	Z
0 (down)	0 (down)	0 (off)
0 (down)	1 (up)	1 (on)
1 (up)	0 (down)	1 (on)
1 (up)	1 (up)	0 (off)

- There are two ways the light can be turned on:
- A up and B down: A and (not B)
- A down and B up: (not A) and B
- Since EITHER works, we simply "OR" them
$\circ \mathrm{Z}=[\mathrm{A}$ and $(\operatorname{not} B)]$ or $[(\operatorname{not} A)$ and B]
- Or $Z=A \bar{B}+\bar{A} B$

Transistors and Gate diagrams

- Later in the reading assignment, logic was drawn as transistors and gates
- Transistors: not important (skipped in reading)
- Gates: important - will be used in this class
- Here, Out $=(\bar{A}+B) \bar{C}$

Where this is headed (one example)

- A solenoid has two positions
- One corresponds to "energized" and the other is "not energized"
- It can thus be treated as a digital device (like the red and green LEDs in lab)

Issues with voltage and current

- Not all interesting digital devices work with ~ 0 to ~ 5 volts
- Some of ours will be ~ 0 to $\sim 12 \mathrm{~V}$
- And some of them require more current than a typical logic chip can provide
- Need a device that accepts a 0 or 1 from a gate and will open or close a switch
- We will use something called a "Darlington Transistor"

Digital control with Darlington

- Here, the logic gate can directly control the solenoid
- 0:no current
- 1: solenoid energized
- The Darlington transistor (or Darlington pair) acts like a digitally controlled switch
- The solenoid could also be a motor or other high-current device
- The 12 V voltage could be higher or lower, as needed

- (Non-SMEs: The SMEs haven't had this yet, either!)

Custom daughterboard \#1

- "Current driver"
- Plugs into DE2-115
- Has 32 Darlingtons
- Allows 32 outputs from DE-2 to control highcurrent devices
- Some other signals come in and are passed through

32 high-current outputs are here

Custom daughterboard \#2

- Stacks on top of daughterboard \#1
- Has very little circuitry on it
- Mainly provides lots of convenient connectors

Parts list

Plus misc. DC motors, input devices (pressure, joystick, inertial, etc.)

A big picture of a 2883 project

- Quantities will vary
- Need to identify sources and funding for anything else that is needed

Inside the FPGA

LED Array

 Driver

- Some will be given to you, working or nearly so
- Others you will develop according to your needs

Structural elements

January 2014


```
v Industrial Solutions
```


- Some 80/20 hardware is available
- Other needs up for discussion
http://8020.net/T-Slot-2.asp

